zoomit

پایان نامتناهی؛ چرا برخی ریاضی‌دانان با مفهوم بی‌نهایت مخالف هستند؟

پایان نامتناهی؛ چرا برخی ریاضی‌دانان با مفهوم بی‌نهایت مخالف هستند؟

در آغاز قرن بیستم، ریاضی‌دانانی به نام‌های ارنست تسرملو و آبراهام فرانکل نظریه مجموعه‌ها را به عنوان پایه‌ای برای کل ریاضیات مطرح کردند. پیش از آن، شاخه‌هایی مانند هندسه، تحلیل، جبر و احتمال‌ در بسیاری از موارد از یکدیگر جدا بودند. تسرملو و فرانکل مجموعه‌ای از ۹ اصل بنیادی موسوم به اکسیوم‌ها (اصل موضوع) را تدوین کردند که امروزه اساس ریاضیات را تشکیل می‌دهند.

یکی از این اصول، وجود مجموعه تهی است، یعنی فرض می‌شود مجموعه‌ای وجود دارد که مانند کیسه‌ی خالی هیچ عنصری ندارد. کسی با این ایده مخالفتی ندارد. اما یکی دیگر از این اصول، وجود مجموعه‌های بی‌نهایت را تضمین می‌کند و اینجاست که متناهی‌گرایان مخالفت می‌کنند. آن‌ها خواهان ساختن ریاضیات بدون این اصل‌اند؛ یعنی ریاضیاتِ متناهی.

رؤیای ریاضیات متناهی

متناهی‌گرایان بی‌نهایت را نه تنها به دلیل محدودیت منابع جهان واقعی رد می‌کنند، بلکه به‌دلیل نتایج غیرقابل‌پذیرشی نیز که از نظریه مجموعه‌ها حاصل می‌شود، با آن مخالف‌اند. برای مثال، طبق پارادوکس باناخ–تارسکی، می‌توان یک کره را به بخش‌هایی تقسیم کرد و سپس از نو آن‌ها را طوری بازچینی کرد که دو کره‌ی هم‌اندازه با کره‌ی اولیه به‌دست آید! از دید ریاضی این مسئله ممکن است، اما در دنیای واقعی امکان‌پذیر نیست.

برخی فیزیک‌دانان معتقدند که شاید بتوان با ریاضیات متناهی، توصیف دقیق‌تری از جهان ارائه داد

متناهی‌گرایان می‌گویند: اگر این اصول به چنین نتایجی منجر می‌شوند، پس اشتباهی در آن‌ها وجود دارد. از آنجا که بیشتر این اصول بدیهی به‌نظر می‌رسند، تنها اصلی که از نظر آن‌ها با عقل سلیم در تضاد است، اصل مربوط به وجود مجموعه‌های نامتناهی است.

دیدگاه آن‌ها این‌گونه خلاصه می‌شود: «یک شیء ریاضی تنها در صورتی وجود دارد که بتوان آن را با تعداد متناهی گام از اعداد طبیعی ساخت.» بر همین اساس، حتی اعداد گنگ مانند جذر ۲ (که با فرمول‌های مشخصی به‌دست می‌آیند) نیز قابل پذیرش نیستند، چرا که شامل مجموع‌های بی‌نهایت‌اند و بنابراین در ریاضیات متناهی جای نمی‌گیرند.

در نتیجه، برخی اصول منطقی مانند اصل طرد شق ثالث ارسطویی که می‌گوید هر گزاره‌ی ریاضی یا درست است یا نادرست نیز دیگر کاربرد ندارند. در متناهی‌گرایی، یک گزاره ممکن است در لحظه‌ای معین «نا‌مشخص» باشد، مثلاً اگر هنوز مقدار عددی آن تعیین نشده باشد. به‌عنوان نمونه، در مورد عدد ۰٫۹۹۹… اگر کل دوره‌ی تکرار را تا بی‌نهایت ادامه دهیم، حاصل برابر ۱ می‌شود. اما اگر بی‌نهایتی در کار نباشد، این برابر بودن دیگر پذیرفتنی نیست.

جهانی بر اساس ریاضیات متناهی؟

بدون اصل طرد شق ثالث، اثبات بسیاری از قضایای ریاضی دچار مشکل می‌شود، چرا که بخش زیادی از آن‌ها به این اصل متکی‌اند. بنابراین جای تعجب نیست که تنها شمار اندکی از ریاضی‌دانان خود را وقف متناهی‌گرایی کرده‌اند. رد بی‌نهایت، ریاضیات را پیچیده‌تر می‌کند.

بااین‌حال، برخی فیزیک‌دانان از جمله نیکولا ژیزن از دانشگاه ژنو به این فلسفه گرایش دارند. او امیدوار است دنیای اعداد متناهی بتواند توصیفی بهتر از جهان ما ارائه دهد. او فرض را بر این می‌گذارد که فضا و زمان تنها می‌توانند حاوی مقدار محدودی از اطلاعات باشند. بنابراین، انجام محاسبات با اعداد بی‌نهایت بزرگ یا طولانی بی‌معناست؛ چرا که در جهان جایی برای آن‌ها وجود ندارد.

گرچه مسیر متناهی‌گرایی هنوز در مراحل ابتدایی است، جذابیت زیادی دارد. به‌ویژه از آن جهت که به‌نظر می‌رسد فیزیک مدرن در برخی مسائل اساسی مانند منشأ جهان یا نحوه‌ی تعامل نیروهای بنیادی به بن‌بست رسیده است. شاید آغاز از نقطه‌ای متفاوت در ریاضیات بتواند افقی تازه بگشاید. افزون بر این، جذابیت زیادی در این پرسش نهفته است که اگر برخی مفروضات اساسی را تغییر دهیم، ریاضیات تا کجا می‌تواند پیش برود؟ شاید شگفتی‌هایی در قلمرو متناهی ریاضیات نهفته باشد.

در نهایت، همه‌چیز به یک پرسش بنیادین برمی‌گردد: آیا به بی‌نهایت باور دارید یا نه؟ و پاسخش را هر کس باید خود بیابد.

منبع : زومیت

مشاهده بیشتر
دانلود نرم افزار

نوشته های مشابه

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا